Code: 23ES1103

I B.Tech - I Semester - Supplementary Examinations - MAY 2025

BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Common for CE, ME, IT, AIML, DS)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts: Part-A and Part-B.

- 2. Each Part contains:
 - 5 short answer questions. Each Question carries 1 Mark and
 - 3 essay questions with an internal choice from each unit. Each question carries 10 marks.
- 3. All parts of Question paper must be answered in one place.

PART – A

1.a)	Develop the formula for energy stored by the inductor.			
1.b)	Explain Cycle with an example.			
1.c)	Explain about Step up transformer.			
1.d)	Write various Non-Conventional energy resources of			
	electricity.			
1.e)	Write the application of Wheatstone bridge.			

			Max.
			Marks
	UNIT-I		
2	a)	Explain KVL, KCL with an example.	5 M
	b)	In the circuit shown in figure, Calculate the current	5 M
		through 8Ω resistor.	

		5Ω 2Ω	
		$10V$ $\stackrel{+}{\bigcirc}$ $\stackrel{>}{>}$ 10Ω $\stackrel{>}{>}$ 8Ω	
		OR	
3	a)	Show that for a sinusoidal voltage RMS value is	5 M
		0.707 times its maximum value. And compute the	
		value of form factor for a sine wave.	
	b)	State and explain superposition theorem with	5 M
	ŕ	suitable example.	
		UNIT-II	
4	a)	Explain the construction of a Single phase	5 M
		transformer with a neat diagram.	
	b)	Describe various applications of different electrical	5 M
		machines.	
		OR	
5	a)	Describe the difference between squirrel cage and	5 M
		slip ring induction motor.	
	b)	Explain the working of PMMC instrument with a	5 M
		neat diagram.	
		UNIT-III	
6	a)	Demonstrate the function of various components in a	5 M
		Nuclear power plant.	
	b)	Explain the significance of equipment earthing.	5 M
		OR	
7	a)	Categorize various tariff methods? Discuss the two-	4 M
		part tariff method.	
	b)	Explain the working principle of Fuse.	6 M

PART - B

1.f)	Explain the characteristics of p-n junction diode in forward
	bias.
1.g)	List the types of flip-flops.
1.h)	What is a rectifier?
1.i)	List the majority carriers in the regions of PNP transistor.
1.j)	Explain Ideal characteristics of a diode.

			Max.
			Marks
		UNIT-I	<u> </u>
8	a)	Articulate the operation of PN junction diode and	5 M
		Draw the V-I Characteristics.	
	b)	Explain how the transistor acts as Small Signal CE	5 M
		amplifier.	
		OR	
9	a)	Explain about input output characteristics of	5 M
		transistor in CB configuration.	
	b)	Differentiate Zener diode and PN Junction Diode.	5 M
		UNIT-II	
10	a)	Draw the circuit diagram of a full-wave bridge	5 M
		rectifier and explain how it rectifies an AC signal.	
	b)	Explain how the Zener diode acts as a voltage	5 M
		regulator.	
		,	1
OR			

11	a)	Explain the operation of a Common Emitter	5 M
		Amplifier with RC coupling.	
	b)	Draw and label block diagram of an electronic	5 M
		instrumentation system. Identify and briefly explain	
		the main components and their functions within the	
		system.	
		UNIT-III	
12	a)	Draw the schematic diagram of half adder and	5 M
		explain in detail about it.	
	b)	Explain the concept of a universal gate. How can	5 M
		NAND gates alone be used to implement other logic	
		gates.	
		OR	
13	a)	Convert (101100) ₂ into decimal, octal and	5 M
		hexadecimal number systems.	
	b)	Explain excess-3 code. How is it related to BCD?	5 M
		Provide an example of excess-3 code conversion.	